Dendritic Ca2+ Channels Characterized by Recordings from Isolated Hippocampal Dendritic Segments

نویسندگان

  • Ege T Kavalali
  • Min Zhuo
  • Haruhiko Bito
  • Richard W Tsien
چکیده

Dendritic arbors are critical for the information processing capability of central neurons, but quantitative analysis of their membrane properties has been hampered by their geometrical complexity. Here, we have focused on an important source of Ca2+ entry in dendrites, the voltage-gated Ca2+ channels, by applying the whole-cell voltage-clamp technique to isolated dendritic segments ("dendrosomes") from rat hippocampal neurons. We found that low voltage-activated T-type Ca2+ channels provide a significantly larger fraction of the Ca2+ influx in dendrites than their counterparts in cell bodies. Surprisingly, 60%-70% of the high voltage-activated Ca2+ current in dendrosomes was N and P/Q type, and these channels were susceptible to neurotransmitter inhibition, suggesting a novel physiological role for G protein-regulated Ca2+ channel modulation in controlling dendritic excitability and Ca2+ signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Active Dendritic Processes in Pyramidal Neurons

The role of active ion channels in dendritic function is among the most interesting and complex aspects of information processing in single neurons While the behavior of isolated channels or the passive electrical properties of dendrites can be studied in isolation, the interaction of multiple nonlinear ionic currents within a geometrically complex structure is described by equations that canno...

متن کامل

Different Ca2+ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca2+ influx.

1. Intracellular recordings, in conjunction with fura-2 fluorescence imaging, were used to evaluate the contribution of the different Ca2+ channel subtypes to the Ca2+ influx induced by back-propagating trains of action potentials. High-threshold channels contributed mainly to Ca2+ influx in pyramidal cell somata and proximal dendrites, whereas low-threshold and other Ni(2+)-sensitive channels ...

متن کامل

M-channels (Kv7/KCNQ channels) that regulate synaptic integration, excitability, and spike pattern of CA1 pyramidal cells are located in the perisomatic region.

To understand how electrical signal processing in cortical pyramidal neurons is executed by ion channels, it is essential to know their subcellular distribution. M-channels (encoded by Kv7.2-Kv7.5/KCNQ2-KCNQ5 genes) have multiple important functions in neurons, including control of excitability, spike afterpotentials, adaptation, and theta resonance. Nevertheless, the subcellular distribution o...

متن کامل

Calcium-activated potassium conductances contribute to action potential repolarization at the soma but not the dendrites of hippocampal CA1 pyramidal neurons.

Evidence is accumulating that voltage-gated channels are distributed nonuniformly throughout neurons and that this nonuniformity underlies regional differences in excitability within the single neuron. Previous reports have shown that Ca2+, Na+, A-type K+, and hyperpolarization-activated, mixed cation conductances have varying distributions in hippocampal CA1 pyramidal neurons, with significant...

متن کامل

Dendritic properties of turtle pyramidal neurons.

The six-layered mammalian neocortex evolved from the three-layered paleocortex, which is retained in present-day reptiles such as the turtle. Thus the turtle offers an opportunity to examine which cellular and circuit properties are fundamental to cortical function. We characterized the dendritic properties of pyramidal neurons in different cortical regions of mature turtles, Pseudemys scripta ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1997